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INTRODUCTION 

The present repo r t  gives a detailed description of a computer program fo r  the calculation of 
the noise produced by a ro to r  encountering a turbulent f low field. This represents the f ina l  product 
of an extended research ef for t  on th is  subject, beginning w i t h  a theoretical study of the leading edqe 
noise produced by  an a i r f o i l  moving through turbulence'. Comparison w i t h  experimental and 
fu r the r  theory was given by  Paterson and Amiet2. A more detailed examination of the effects of 
vary ing  the various parameters i n  the theoretical calculation i s  given i n  reference 3. 

This computer program is c r i t i ca l l y  dependent on the avai lab i l i ty  of re la t ive ly  simple a i r f o i l  
response functions that include the effects of compressibi l i ty and skewed gusts.These are given i n  
references 4-8; only the necessary relat ions are presented here. Also needed i s  a turbulence model; 
that used in i t i a l l y  was the Karman spectrum which can be found i n  many texts such as reference 9. 
This has more recently been extended, as discussed below. 

T h l s  i n i t i a l  analysis was applicable to the case of the rect i l inear  motion of an airfoi l .  Using 
the pr inc ip les elaborated in references 10 and 11, the analysis was extended i n  reference 12 t o  the 
case of ro ta ry  motion of an a i r f o i l  such as that of a propeller o r  helicopter rotor. This i s  based on an 
integration of "instantaneous spectra" around the azimuth, and includes retarded t ime effects on the 
generating source as discussed, fo r  example, i n  reference 13. 

The analysis of reference 12 is not l im i ted  to isotropic turbulence; i n  principle, any 
a r b i t r a r y  turbulence spectrum can be specified. Because of lack of a good non-isotropic model, 
however, the computer program was in i t i a l l y  w r i t t en  assuming an isotropic turbulence. The 
present program extends th is  by allowing a par t icu lar  type of non-isotropic turbulence. I n  
part icular, the turbulent spectrum input  to the program i s  assumed to be produced by an isotropic 
turbulence that has undergone a rap id  contraction. The spectrum i s  calculated by the analysis o f  
reference 14 (together w i t h  the program noted i n  the fol lowing paragraph for  calculation of the 
deformation tensor). This i s  a minor extension of the classical analysis of Ribner and TuckerI5 i n  
which i s  calculated the spectrum of turbulence undergoing a rap id  contraction. This analysis i s  
based on the concept that the turbulence i s  composed of vor t ic i ty ,  behaving purely kinematically and 
moving w i t h  the local f l u id  velocity. The f ina l  vor t i c i t y  distribution, and thus, the velocity 
spectrum, can then be determined using the classical equations of CauchyI6 f o r  the distort ion of 
vor t i c i t y  by a deformation. 

The present program does not calculate the f l u id  deformation that i s  necessary to complete the 
turbulence definition. The extension of the present program to include the non-isotropic case was 
developed i n  conjunction w i t h  a f l u id  deformation analysis of Simonich. This i s  a mean f low 
calculation that replaces the ro to r  and i t s  wake by a series of vortex r ings  to simulate the f low f ie ld  
induced by the ro to r  t i p  vortices. Further details of th is  analysis and calculations showing the use o f  
the two programs together are given i n  reference 17. The two programs can be used independently, 
but  the deformation program, also available as an ANOPP module, i s  intended to be used i n  
conjunction w i t h  the present noise prediction program. I f  th is  i s  desired, the ANOPP theory manual 
describing the deformation program (the companion to the present theory manual 1, should also be 
consulted. The programs have been configured so that the output of the deformation program i s  
directed as input  to the present noise prediction program. 

The present program can also be r u n  independently. For example, an isotropic turbulence can 
be assumed; the deformation tensor input  i s  then the identity ma t r i x  (the diagonal ma t r i x  w i t h  1's 
on the diagonal ). The program can also be independently run w i t h  any a r b i t r a r y  deformation that 
the user wishes to specify. This allows the user to  investigate the effect o f  the any par t icu lar  
deformation tensor on the noise. 
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A N A L Y S I S  

A. A i r f o i l  in Rect i l inear Mot ion 

The noise model assumes a vert ical  gust wp w i th  the convection velocity U, paral le l  t o  the x axis. 
This gust impinges on a f la t  plate a i r f o i l  situated between - b  < x < b and -d < y < d i n  the x,y plane. The 
convection velocity U, of the gust i s  eventually set equal to the f r e e  stream velocity U, but the i n i t i a l  
derivation i s  performed w i t h  U, * U. Imposing the condition of no flow through the a i r f o i l  surface 
leads to an unsteady surface dipole distr ibut ion leading t o  radiated noise. Linearized theory i s  assumed 
throughout. 

The vert ical  gust i s  assumed to be produced by an incident turbulence field. The Karman 
spectrum i s  used as the basic model f o r  the turbulence. This i s  modified later to include the effect o f  
distort ion produced by flow gradients. 

1. Leading Edge Noise 

A gust o f  the form 

-i[ k x ( x  - U c t )  + k y y ]  fl= 9 w R ( k x , k y )  e 

i s  incident on the air fo i l .  I n  general th is  i s  a single Fourier component of a more comp 
f ie ld  wg(x - U,t,y) where 

The inverse Fourier relat ion i s  

R 

( 1 )  

icated veloc 

-R 

where R i s  a length scale indicating the region over which the gust velocity f ie ld extends. The 
convection velocity Uc can be a function of kx and ky. 

When th is  gust impinges on the a i r fo i l ,  a surface dipole distr ibut ion i s  induced to oppose the gust 
f low and satisfy the condition o f  no flow through the a i r f o i l  surface. This surface dipole distr ibut ion 
gives a pressure jump Ap across the a i r f o i l ;  a normalized pressure jump g i s  defined as 

Integration over kx and ky then gives for the pressure jump due t o  a l l  wavenumber components: 
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AP(X,Y,t)  

I n  the frequency domain 

A p T ( x , y , d  = 2npo w &kY)  g(x,X,EY,M) e-ikyy dky J 
-a 

where X i s  the specific value o f  kx such that X = o/U, and the Four ier  t ime integral i s  

T 

T +  w 

( 5 )  

(7) 
-T 

where T = R/U,. 

Knowing the force distr ibut ion produced by the f lu id  on the a i r fo i l ,  the far - f ie ld  noise can be 
calculated by noting that a force imposed on the f lu id  produces a dipole pressure f ie ld response. The 
far - f ie ld  pressure o f  a point dipole situated at xl,yl, aligned w i th  the z axis and w i th  strength F, 
e x p ( i o t )  i s  

where the observer i s  located at x,y,z and 

Equation ( 8 )  gives the far - f ie ld  sound produced by a point force and equation ( 6 )  gives the force 
at a point on the a i r f o i l  produced by the gust i n  terms of the a i r f o i l  response function. Combining and 
integrating over the a i r f o i l  planform gives the total far - f ie ld  pressure. Thus, 

d b  

-d -b (10)  

J wR(X,ky) g(xl,x’,iy,M) e-ikyy1 dky dxl dy, 
- W  
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An effective l i ft function L per un i t  span can be defined as 

This function includes retarded t ime effects i n  the propagation o f  the sound f rom the a i r f o i l  to the 
observer. For an observer overhead of the retarded source position ( x / a  = M ) equation ( 11 ) reduces 
to  the l i f tkipan. 

It i s  assumed here that there i s  no spanwise var iat ion of the a i r f o i l  characteristics ( o r  a t  least 
l i t t l e  var iat ion on the scale of the turbulence o r  other upwash disturbance). The yl integration i n  
equation ( 1 0 )  can then be performed. For  an a i r f o i l  situated between -d < y < d (where d = semispan) 
the yl integration gives the factor 

so that f rom equation ( 10 ) 

I n  general, th is f inal  ky  integral cannot be evaluated i n  closed form. Thus, the integral must be 
evaluated numerical ly i f  an exact resul t  is desired. However, f o r  an a i r f o i l  span large compared to the 
dimensions o f  the upwash disturbance a simple approximation can be made. I n  th is  case (Ad >>  1) the 
expression i n  equation ( 1 2 )  varies rapidly between positive and negative values, giv ing a cancelling 
effect, except where 

Thus, the function i n  equation ( 1 2 )  acts l i k e  a delta function and wo  and L can be moved outside the 
integral by setting ky = Ky i n  these functions. The remaining integral o f  x-l  sin x i s  equal to n; thus 

(15)  

where the factor e x p ( i o t )  has been omitted. This can be Fourier transformed using the inverse of 
equation (7 )  t o  f ind the far - f ie ld  t ime history of  the pressure; Le., 

Equations ( 15) and ( 1 6 )  give far - f ie ld  expressions appropriate for  the case o f  a deterministic 
velocity f ield such as the case o f  an a i r f o i l  cutting a vortex. The case o f  interest here is  that o f  an 
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a i r f o i l  i n  a turbulent f low f ie ld for  which the upwash velocity i s  not deterministic. The resul t  fo r  th is 
case was derived i n  reference 1, and can be obtained f rom equation ( 15). Because in f in i te  span 
a i r f o i l  response functions are used (thereby neglecting end effects) the problem i s  modeled as a 
turbulence region located between -d < y < d incident on an in f in i te  span air fo i l .  Also, the turbulencz 
i s  assumed to be located between -R < x < R, where R i s  a large length scale that can l a t e r  be allowed t 3  
approach inf in i ty.  This avoids convergence di f f icul t ies i n  the integrals that would appear i f  R were 
immediately set equal to inf in i ty.  

For a random function f( y )  which is nonzero between -d < y < d, the spectrum function ql i s  
related to  the Fourier transform o f f  by (see Appendix A) 

ql(ky) = ( n / d )  E[Fd(ky) Fd*(ky)l  ( 17a) 

where E represents the expected value and 

Equation ( 1 5 )  i s  mult ip l ied by i t s  complex conjugate and the expected value taken. Then using 
equation ( 17) the following relations hold 

Thus, 

This agrees w i t h  equation ( 1 8 )  of reference 1. 

2. A i r f o i l  Response Functions 

As discussed in reference 4, when calculating an approximate a i r f o i l  response function i t  i s  
natural t o  divide the frequency range into a low and a high frequency regime. The r a t i o  o f  a i r f o i l  chord 
to acoustic wavelength determines which regime i s  appropriate f o r  a part icular case. 

For s imp l ic i t y  the case U, = U is  considered; Le., the incident disturbance convects at the f r e e  
stream velocity. Thus, X = Kx. The additional complexity i s  not needed here, but i f  resul ts f o r  the case 
U, * U a r e  needed, they can be derived using the method of references 5 and 6. 

Ll 

found 
For low frequency and an a i r f o i l  situated between - 1 < x < 1, the normalized pressure jump i s  
to be5 
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where 
f ( M )  i ( 1 - 8 )  I n  M + 8 I n (  1 + 8 )  - I n  2 Kx* P K A 2  

Here S(E) i s  the Sears function’ and the overbar on a quantity signifies normalization by the 
semichord b. 

I n  der iv ing the a i r f o i l  response function fo r  high frequency an i terat ion procedure i s  used which 
alternately corrects the boundary condition a t  the leading and t ra i l i ng  edges. The f i r s t  two terms i n  
th is series are 

1 [ ( l  + i )E* (2c  ( 1  - i ) )  - 11 e -ios g*(x,Rx,0,M 1 = 
n {2n(l + M )  RX 

and where E* i s  a combination of Fresnel integrals; Le., 

X 

0 

By comparison w i th  numerical results of  Graham* these results fo r  g a re  found t o  be accurate t o  
w i th in  a few percent i f  the changeover f rom low to high frequency is made at the value C = 0.4; the 
combination o f  the two functions becomes more accurate as moves away f rom 0.4. 

These values a r e  f o r  para l le l  gusts; Le., ky = 0. Values for ky * 0 can readi ly be found for the 
case U, = U using the s im i la r i t y  results o f  Graham*. Depending on whether the gust-airfoi l  
intersection point moves subsonically o r  supersonically relat ive to  the fluid, the a i r f o i l  response 
function i s  s im i la r  to either the 3-D incompressible solution o r  the 2-0 compressible solution 
respectively. Results a r e  given here f o r  the supersonic sweep speed case, but the results fo r  the 
subsonic case readily fol low i f  the appropriate analytical continuations of the various functions a r e  
employed. 

For  a gust-airfoi l  intersection that moves supersonically relat ive to the fluid, the a i r f o i l  
response function i s  related to that f o r  ky = 0 by 

where 
Bo2 = B 2 (  1 + Ky2/Kx2) M-2 M2 B2 Ky2/Kx2 
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This relat ion leads to the fol lowing resul ts  fo r  g 

u', > 0.4 ( 2 6 a )  

where @4 Rx*[M,(l + %) - M 2 % -  11 + n / 4  

The effective l i f t  2 can be calculated using equation ( 4 )  to be 

where oi i i ( ~ , / ~  - X/O) 

0 2  3 x' + C(M - X/U) - n/4 

Here X = Kx so that O2 reduces to O2 = Rx*( 1 - Mx/o)  - n/4. 

(29) 

3. Spectrum Functlon - Karman spectrum 

When the forc ing function i s  a random phenomenon such as f low turbulence certain analytic 
expressions are available to represent the spectrum. A widely used model fo r  isotropic turbulence i s  
that of von Karman. For th is  model the spectrum i s  wr i t ten  

for the three-wavenumber spectrum and 
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for the two-wavenumber spectrum where 

and the circumflex on k signifies normalization by k,. Further discussion of this spectrum function 
can be found in texts such as that of Hinzeg. Also, additional results pertaining to the Karman 
spectrum are  given i n  Appendix 1 of reference 1. 
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8. A i r f o i l  i n  C i r c u l a r  Mot ion  

Wi th  certain restr ict ions, the pr inc ip les of the previous analysis fo r  an a i r f o i l  in rect i l inear  
motion can be applied to the case of a rotor. A f la t  plate a i r f o i l  of zero thickness can be represented b y  
dipoles fo r  both the case of rect i l inear  motion and c i rcu la r  motion (such as fo r  a propeller). The 
far - f ie ld  pressure fo r  a dipole moving along a curved path was shown by  Lowsonlo to be 

where the square brackets imp ly  evaluation at the retarded t ime and Idn = 
component of the dipole i n  the direct ion of the observer. The te rm represents the sound produced by 
an unsteady force and would be the same for  the same force in rect i l inear  motion. The Idn te rm gives 
the sound produced by  a force of constant strength under acceleration. I f  the frequency o of the force 
i s  much greater than the rotational frequency Q of the rotor, t h e t  t e rm i s  much greater than the 6l,, 
term, and i t  i s  as i f  the dipole were moving i n  rect i l inear  motion at that instant o f  time. 

i s  the acceleration 

For incident turbulence noise of not too low a frequency, as we l l  as being able to neglect the the 
Idn term, the blade force amplitude for  a ro to r  i s  the same as for  an a i r f o i l  moving i n  rect i l inear  
motion. The high frequencies are produced by small  eddies, and small  eddies are cut  completely by the 
a i r f o i l  before the a i r f o i l  undergoes any appreciable rotation, and th is  small  rotat ion has an 
insignif icant effect on the airfoil-eddy interaction. 

Thus, the resul ts  of the previous section can be used to calculate the noise of a propeller o r  
helicopter ro to r  at any instant of time. This resul t  can be averaged over the period of rotat ion to 
obtain an average spectrum. This i s  a standard technique fo r  t ime vary ing  spectra as discussed by 
Bendat and Pierso121; i t  gives a resu l t  appropriate for  comparison w i t h  measurements made by a 
spectral analyzer i f  the measurement t ime i s  significantly greater than the blade passage time. 

The geometry of  the problem i s  shown in Figure 1. The or ig in  of  the x,y,z coordinate system i s  
f ixed to the ro to r  hub w i t h  z along the ro to r  axis. The axial component of f low i s  i n  the negative z 
direction. The observer, f ixed re la t ive to the hub, i s  i n  the X,Z plane at a distance r f rom the hub. The 
l i ne  f rom hub to observer makes an angle 8 w i t h  the z axis. The vector uf, representing the non-axial 
component of flow, i s  at an angle 9 to the y axis; for  9 = 180O, blf i s  along the y axis. The angle y 

represents the angle the blade span makes w i t h  the x axis; Le., 7 = at, and fo r  7 = 0 the blade span 
l ies  along the x axis. 

Because the blade i s  assumed to be a f la t  plate w i th  zero steady loading, a blade segment makes an 
angle a w i t h  the x,y o r  azimuthal plane where 

and Mt i s  the azimuthal Mach number of the blade segment re la t ive t o  the ro to r  hub. Due to the 
assumption of l inearized theory, the blade segment need not be exactly aligned w i t h  the flow, but  can be 
l igh t ly  loaded. The angle should not d i f fer  significantly f rom the value given by equation ( 3 4 ) ,  
how ever. 

Because of  the skewed inflow, there is  a spanwise component Ma o f  f low over the blade where 

bla = -Mf s i n ( y  + 9) (7  cos Y + 7 s in Y )  

9 
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I The chordwise component b& of the r o t o r  segment Mach number i s  

ub = [Mt  + Mf cos(y + *) I  (-i sin y + 1 c o s y )  + M, (36) 

The expression given by equation ( 19) f o r  the far- f ie ld o f  an a i r f o i l  i n  rect i l inear  motion i s  
w r i t t en  i n  terms o f  the present a i r f o i l  position. I n  order to be able to apply th is  relat ion t o  the 
rotat ing a i r fo i l  segment, the equivalent o f  the present position must be calculated for  the a i r f o i l  
segment. This "present position" i s  the position of the a i r f o i l  segment relat ive to the f l u i d  i f  it were to  
move along a rect i l inear path dur ing the t ime fo r  the sound to propagate f rom the source to the 
observer. An alternative method i s  to  r e w r i t e  equation ( 19) i n  terms o f  the retarded source position. 
Both methods should be of equal d i f f icu l ty  and should give the same results. The former i s  used here to  
remain consistent w i t h  previous publications by the author. 

Both methods begin w i t h  a calculation of the retarded source position of the a i r f o i l  segment ( o r  
the rotor  hub since distances on the order of the source size are not important when calculating the 
source position fo r  a far- f ie ld observer). I f  at a t ime t = 0 a marker i s  placed i n  the f l u i d  and a burst  
o f  sound i s  emitted, at t ime t = T,, when the observer hears the sound burst, the marker  has moved t o  
position gs. The observer i s  at 

~ 
xo = r ( i  sin e + E cos e )  ( 3 7 )  

~ 

The distance re o f  the observer f rom the retarded source point gs i s  

I 

re2 = (r sin e - xs)2 + ys2 + (r cos e - zs)2 

Also, 

Since and M_f are given by 

the retarded source coordinates are 

T, = re/ca 

t& = -M, G 

Mf = -Mf (1 sin IJI + 1 cos 9) 

x, = -Te cg Mf sin IJI = -Mf re sin IJI 

y, = -Mf re cos IJI 

z, = - M, re 

Substitution o f  equation ( 4 1  into equation (38 )  leads to the fol lowing resul ts for  re 

r , = r [ M , c o s Q +  4 l - M s Z s i n 2 Q  ] / ( l - M $ )  

where 

10 

(38) 

(39) 

(40) 

( 4 2 )  



Ms cos 0 = Mf  s in  s in  6 + M, cos 6 

By calculating (M_s/Ms)-(-xo), 0 i s  shown to be the angle between the convection Mach number 
MS and the vector linking the observer and the source, -xo. Substitution o f  equation (42) into 
equation (41) determines the retarded source position xs. 

The "present" source position 2, i s  found by adding to the retarded source vector a vector giving 
the chordwise a i r f o i l  movement dur ing the t ime T,. The spanwise component of f l u id  velocity i s  
ignored here since i t was ignored i n  deriving equation ( 19). This i s  allowable since i n  calculating the 
noise of  an in f in i te  span a i r f o i l  i n  rect i l inear  motion, any spanwise f low velocity can be eliminated by  
a coordinate transformation. The only purpose of calculating the "present" source position i s  to f ind 
the appropriate coordinates fo r  use i n  equation ( 19). This position i s  

Introducing equations ( 4  1) and (36) in to  equation (44 )  gives 

x /r = -?[bit s in  Y + Mf cos Y s in  ( Y  + I#)] + i [ M t  cos 7 - Mf s in  Y s in  ( Y  + $11 ( 4 5 )  -P e 

For a coordinate system at th is  "present" source position the observer has coordinates x l  given 

( 4 6 )  
by 

Xl = 2 0  - x p  

Equation ( 19) i s  appropriate for  a coordinate system i n  which the f la t  plate a i r f o i l  l i es  i n  the 
x,y plane w i t h  the span along y. Thexi coordinate system above must be rotated to the same 
orientation w i t h  respect to the airfoi l .  Rotation of the xl system about the z axis by an angle n - Y 
gives a system which w i l l  be called the x2 system w i t h  y2 pointed along the a i r f o i l  span. Rotation o f  
the x2 system about the y2 axis  by  an angle a gives the z3 system w i th  x3 along the chord point ing 
f rom leading to t r a i l i n g  edge. The relat ions between thexi andz3 systems are 

x3 = (x, s in  Y - y, cos y )  cos a - zl s in a 

y3 = XI cos y + yl s in  y ( 4 7 )  

23 = (xi s in  7 - ylcosy) sincx + zlcosa 

The observer coordinates in the 2 3  system are the coordinates needed in equation ( 19). From 
equations (45)  - (47)  and equation (37 1 the observer coordinates in the x3 system are 

x3 = re Mt cos a - ro cos 0 

y3 = xo  cos y + Mf re s in  ( y  + $1 

. 23 = ( x o  s in  Y + re Mt) s in a + zo cos a 

where 
cos 9 = cos 8 s in  a - sin 6 s in  y cos a r o 2  = xo2 + yo2 + zo2 
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9 i s  the angle between the x3 ax is  and the l i n e  f rom the observer to the ro to r  blade segment. This can 
be seen by replacing xi by xo i n  the expression fo r  x3 given by  equation ( 4 9 )  and substi tut ing for go 
using equation (37). 

1. W i t h  No Blade-Blade Cor re la t ion  

Equations (48)  - (49) give the appropriate "instantaneous observer coordinates" to use i n  
calculating the sound spectrum f rom equation ( 19)..The angle y = at i s  a function of time. I n  order to  
calculate the t ime averaged spectrum, an average around the azimuth must be determined. This 
average must account fo r  both the Doppler sh i f t ing of frequency as the a i r f o i l  segment moves re la t ive 
to the observer, and the retarded t ime effects as the blade moves around the azimuth. The la t te r  
correction i s  needed because the blade spends dif ferent amounts of time, i n  the acoustic sense, at each 
azimuthal location. As noted i n  reference 12, the proper azimuthal weighting i s  the factor d o o  
where w i s  the frequency of the a i r f o i l  forces and wo i s  the Doppler shifted frequency. The 
azimuthally averaged spectrum i s  then 

The spectrum S ' p p ( g , w ~ , ~ )  fo r  the case of  re la t ive motion between source and observer is  related to 
SPp(x,w,y 1 w i t h  no re la t ive motion by the Doppler factor d o o ;  i.e., as shown i n  reference 13, 

Thus, equation (50 )  and (5  1 ) together introduce a factor (o/oo 12. 

The Doppler factor o/oo i s  shown i n  references 12 and 13 to be 

where ut = Mach number of source re la t ive to observer 
= Mach number of source re la t ive to f l u id  

S-0  = unit vector f rom retarded source position to observer. 

In  vector notation 

ut = Mt ( -7 s in  y + j cos Y 

Ur = i ( Mf s in  g - M t  s in  y ) + ( Mf cos @ + M t  cos y ) + k M, 

Using equation ( 4 1  1 and the fact that = re gives the unit vector 

12 

(53) 



SAO = i ( x / r e  + Mf s in  1) + Mf cos Q + ( z / r e  + M,) ( 5 4 )  

and f ina l l y  f rom equation (65) and S-0 = - 0-S 

0 
0 0  

M t [ ~  s in  7 - Mf re cos ( 7  + @ ) I  
(1 - M \)re - x M f s i n  - z M , 
M t [ ~  s in  7 - Mf re cos ( Y  + 911 

(1 - ( M f 2 +  MZ2)  s in2@ 

- = I +  

= I +  

(55) 

The f ina l  resu l t  fo r  the azimuthally averaged spectrum i s  given by  equation (50 1, ( 5  1 ) and 
(55) w i t h  Spp(r,o,y) i n  equation (51) given by equation ( 19). The x,y,z coordinates to be used i n  
equation ( 19) are X3,Y3,Z3, respectively, given by equation (48 1. 

2. With Blade-Blade Cor re la t ion  

The technique of  averaging the instantaneous spectrum around the azimuth i s  va l id  i f  there i s  no 
correlat ion between the spectra for  points widely separated i n  time. For the case of turbulence 
interaction, however, th is  i s  not necessarily true. The larger  turbulent eddies can be cut  more than 
once whi le passing through the ro to r  plane and the spectra f rom these events are correlated. 

For the case where blade-blade correlat ion exists, the autocorrelation function would consist o f  
a series of  peaks, such as shown i n  Figure 2, the n’th peak representing the correlat ion of sound f rom 
the zeroth blade w i t h  that of the n’th blade. The correlat ion function fo r  the mul t ip le  blade passage 
case can be wr i t t en  

where Rpp(n) represents the cross-correlation of the far-f ield sound f rom the n’th blade w i t h  that 
f rom the zeroth blade. The t ime T2 i s  the time, as heard by an observer, between blade chops o f  any 
given eddy. 

Figure 3 i l lus t ra tes the geometry o f  the mul t ip le  chopping. The blades move along l i ne  AD. The 
blades are assumed to be moving rect i l inear ly  i n  the v ic in i ty  o f  the eddy; th is  i s  a reasonable 
assumption provided that the eddies are not too large. The eddy moves i n  the chordwise direction 
re la t ive to the a i r f o i l  w i t h  Mach number 
moved down f rom the ro to r  plane a distance 

given by equation (36). After a t ime Ti the eddy has 

FE = T i  V, 

and i n  the plane a distance 

(57) 

(58) 

At t ime T blade 1 i s  at point C; the distance BC i s  
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The distance L i s  then 

2 2 = B F 2 +  FE'=Ti2VZ2+ [ ( T - T 1 ) V t - T l V f C O S ( 7 + \ U ) ] 2  ( 6 6 )  

This distance i s  the minimum between the l ines ED and BG i f  BE i s  normal to  these two lines. For  th is  
to be true, BO2 = BE2 + ED2 o r  

Equations (73)  and (74)  can be solved fo r  Ti and Z giving 

Ti = T (Vt/V,) s in  a cos a L = T Vt s in  a ( 6 2 )  

Equation ( 19) for the far- f ie ld spectrum o f  an a i r f o i l  was obtained by mu l t i p l y ing  equation 
( 15) by i t s  complex conjugate and taking the expected value. The equation f o r  the n'th blade passage i s  
equation ( 15) w i th  the additional factor exp(ik,nZ) t o  account f o r  the 23 distance n t  o f  the n'th blade 
path f rom the zeroth blade path as measured w i th  respect to the fluid. 

The t ime T2 i s  the t ime Ti p lus the additional t ime difference fo r  the sound f rom point B i n  
Figure 3 t o  reach the observer as compared t o  the t ime f o r  the sound f rom point C t o  reach the 
observer. From the last  factor i n  equation ( 151, the t ime for  the sound t o  reach the observer f rom 
point C i s  

Replacing x by x + X and y by y - Y where 

X i BC = ( T  - T i )  V t  Y = TiVfsin (7  + @ )  ( 6 4 )  

gives the t ime Ti for  the sound to propagate f rom point 8. Taking the difference between Ti and T,,, 

Then, T2 can be determined from equations (621, ( 6 4 )  and (65) .  

Taking the Four ier  transform o f  equation (56) gives 

The cross PSD, Spp(n) i s  found by mul t ip ly ing equation ( 15) by i t s  complex conjugate w i th  the 
additional factors exp (i k,Zn) as noted before, o r  f rom equations ( 19 ) and ( 5 1 

Introducing equation ( 6 7 )  into equation ( 6 6 )  and using the identi ty 
14 



gives 

where 
KZ(n)  = (u0T2 + 2nn) /Z  
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C. Turbulence Contract ion 

The analysis used here for calculating the spectrum of turbulence being subjected to a rap id  
contraction follows the general method of  Ribner and Tucker's. I t  has been generalized s l ight ly  to 
allow fo r  non diagonal deformation tensors, although in pr inc ip le  these resul ts  could be derived f rom 
the Ribner and Tucker resul ts  by f i r s t  transforming to p r inc ip le  coordinates. The analysis i s  based on 
the fact that vor t i c i t y  follows the flow. There i s  assumed to be no interaction of the vo r t i c i t y  w i t h  
itself. The details of the analysis are presented i n  reference 17. A summary of the necessary 
equations i s  given below, and a fu l l e r  derivation i s  given in Appendix B. 

The upstream and downstream coordinate systems are  designated by the two coordinate systems 
eu and ed respectively where e i s  a ma t r i x  e(i,j) composed of  the three unit vectors along the axes. 
e(i, l), e(i,2) and e(i,3) denote the three components of the unit vectors para l le l  to the local 
vor t i c i t y  vector $2, the local turbulence velocity and the unit vector i n  the direct ion of  the wavevector, 
respectively. The relat ion between e(i, 1 Iu and e( j, 1 )d i s  readi ly obtained f rom the knowledge that 
vortex l ines  follow f l u id  particles. The relat ion i s  then obtained f rom the Cauchy re la t ion 

where ax i /a t j  represents the deformation tensor, x i  represents the upstream par t ic le  coordinates and 
t j  represents the downstream par t ic le  coordinates. I n  the computer programs aXi/dtj i s  represented 
by DXDZ(1,J). The relat ion between eu(i,3) and ed(i,3) can be found by consideration of the manner 
of distort ion of a sheet of vo r t i c i t y  between upstream and downstream: since vo r t i c i t y  follows the 
fluid, a pa i r  of vectors l y i n g  i n  th is  plane upstream also l i e  i n  the corresponding downstream plane, 
and the wavevector i s  normal to the plane. F i r s t  assume that ed(i,j) i s  given. Thus, i f  Q jd  i s  replaced 
i n  t u r n  by ed( i , l )  and ed(i,2), two vectors are found, the cross product of which l ies  along eu(i,3). 
The remaining vector eu(i,2) can then be found by the cross product o f  eu(i, 1) and eu(i,3). 

Knowing the relat ion between eu(i,j) and ed(i,j), the relat ion between the downstream and 
upstream wavenumbers i s  given in Reference 17 as 

kd/ku = eU(i,3) ed(j,3) dXi/at j  (72)  

The relat ion between f l u id  velocities i s  

(73)  

where flu i s  the magnitude of the vector found by replacing Q jd  i n  equation ( 7  1 ) by e( j, 1). 
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l i s t  o f  Symbols 

B 
b 

CO 
d 
E[.] 
E(k) 
E* 
f0 
f (M) 
9 
I 
Li, 
Jo, J1 

kx, ky 
ke 
K X  

K X *  

K Y  

C 

L 
L 
M 
M-a 
M-b 
M-f 

M-r 
M-t 

M-z 
0-s 
PT 
AP 
Po - 0 
9 
re  
r 0  
r 
R 
RPP 
Rpp(") 

sPP 
$'PP 
T 

Blade number 
A i r f o i l  semichord 
A i r fo i l  chord 
Sound speed 
A i r f o i l  semispan 
Expected value operator 
Energy spectrum; see Eq. (32) 
Fresnel integrals; see Eq. (22 
Frequency measured by observer 
Function of Mach number; see Eq. (20) 
Normalized a i r f o i l  response function; see Eq. ( 4 )  
Factor defined by Eq. (32) 
Uni t  vectors i n  the x, y and z directions 
B esse1 functions 
x and y wavenumbers 
Wavenumber defined by Eq. (32) 
O/U 

K,/P 
LlVY /a 
Turbulence integral length scale 
Effective lift; see Eq. ( 11 1 
Free stream Mach number 
Spanwise f low Mach number over blade 
Chordwise Mach number of  blade 
Fl ight  Mach number i n  ro to r  plane 
Mach number of ro to r  segment re la t ive to f lu id  
Mach number o f  blade segment relat ive t o  r o t o r  hub 
Flow Mach number along rotor  axis 
Uni t  vector f rom retarded source to observer 
Four ier  t ime transform o f  p 
Pressure jump on a i r f o i l  produced by a l l  gusts 
Far- f ie ld pressure o f  dipole 
Magnitude o f  turbulent velocity i n  Appendix B 
Turbulent velocity i n  Appendix B 
.Distance from observer to retarded source 
Distance of observer f rom rotor  hub 

Integration l i m i t  f o r  spatial Four ier  t ransform 
Autocorrelation of far- f ie ld sound 
Cross correlat ion o f  far- f ie ld sound f rom n'th blade w i th  that of zeroth blade 

-X  

Cross spectrum o f  a i r f o i l  surface pressure 
Far- f ie ld acoustic spectrum for observer f ixed re la t ive to  blade segment 
Far- f ie ld acoustic spectrum for  observer f ixed re la t ive to  blade hub 
Time between blade passes 
Time between eddy chops 
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T2 
Te 
t 
Tiz 
U 
'b 

UC 
v f 
Vt 

vz 

wo 
WR 
X,Y ,z 
2 0  

X -S 

XP 
21 
x3 
X 
Y 
z 
U 

82 
8b2 

Y 
0 

0 
x 
u 
PO 
a2 

7 0  
0 

Ilr 

r 

*ww 

0 

0 0  
LI 

0 
LI 

Over bar 
Subscript 

Time between eddy chops as heard by  observer 
Time between emission and reception of sound 
Time 
Mean square turbulence level 
Stream velocity 
Component of f l u id  velocity along a i r f o i l  chord 
Turbulence convection velocity 
Flow velocity in ro to r  plane 
Azimuthal velocity of a i r f o i l  segment 
Axial f low velocity 
Gust velocity 
Spatial Four ier  t ransform of gust velocity 
Cartesian coordinate system; f low along x and y along span 
Vector f rom ro to r  hub to observer 
Vector f rom ro to r  hub to retarded source position 
Hypothetical "present source position" defined by  Eq. (44 )  
Vector f rom "present source position" to observer 
Observer position i n  rotated coordinate system 
Distance defined by Eq. (64)  
Distance defined by  Eq. (64) 
Distance defined by Eq. (62)  
Out of plane angle of ro to r  blade 
1 - M2 

Gamma function 
Azimuthal blade angle 
Angle defined by Eq. (43) 
Functions defined by Eq. (29 )  
Angle of observer f rom upstream ro tor  ax is  
0 /Uc; also, in  Appendix B th is  is the wavelength 
M K,/BZ 
Density of a i r  

Time between eddy chop and when observer hears i t 
Angle defined by Eq. ( 4 9 )  
Velocity spectrum of turbulence 

1 - Mb2 

x2 + F ( y 2  + 2 2 )  

Angle of f low i n  ro to r  plane; see Fig. 1 
Radian frequency measured by observer fixed re la t ive to ro to r  hub: also, vor t i c i t y  i n  
Appendix 0. 
Dopt le r  shifted radian frequency measured by observer f ixed to ro to r  hub 
0 6  /u 
Fourier transformed variable 
Normalized by semichord b 
Denotes s im i la r i t y  variable; see Eq. (28 )  
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Appendix A: Relation o f  Fourier Transform o f  a Random Function t o  I t s  
~ Spectrum 

I f f (  y )  i s  a random function of y between -a, < y < a,, the in f in i te  Four ier  t ransform between 
these l i m i t s  i s  not defined, in general, because of convergence problems. If, however, f in i te  l i m i t s  a r e  
placed such that f( y )  i s  random between -d < y < d and f( y )  i s  zero outside th is  range, a Four ier  
t ransform 

I -d 

I 

I can be defined for  any part icular sample f(y). The cross correlat ion function R i s  

The spectrum @ i s  the Four ier  t ransform of R so that 

-d 

Integration over y then gives 

which i s  equation ( 17). 
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Appendhi B: The Spectrum o f  Turbulence Undergoing a Rapid Distortion 

The fol lowing analysis calculates the change i n  wavevector and f l u id  velocity fo r  a turbulent f low 
undergoing a rap id  contraction. A sketch of the problem i s  shown in f igure 4. The analysis begins i n  
Section 1 by der iv ing the relat ions between vo r t i c i t y  and velocity fo r  a par t icu lar  wavevector 
component at a point. These resul ts  are derived f rom the assumed sinusoidal variat ion fo r  the ve loc iq  
f ie ld  of  a wavevector component. 

In  section 2 the equations fo r  the transport of vor t i c i t y  are used t o  derive a relat ion between the 
pre-contraction and post-contraction velocity vectors of a wavevector component. In  section 3 the 
same transport  equations are used to derive a relat ion between the pre-contraction and 
post -contract ion wavevectors. 

Finally, in section 4 the resul ts  are compared to the resul ts  of Ribner and Tucker. Agreement i s  
found fo r  both the wavevector and the f l u id  velocity transformation. 

1. Relat ions Between Velocity and Vor t i c i t y  

I n  calculating the noise generated by a ro to r  moving through a turbulent field, a required input  
i s  the turbulence spectrum as a function of the wavevector 

- k =i k, + 7 k y +  I? k, 

The velocity f i e l d q  of a single wavevector Fourier component can be wr i t t en  

, where the d superscr ipt  re fe rs  to the downstream o r  post-contraction location, at the ro to r  face. The 
superscr ipt  u w i l l  re fe r  to the upstream pre-contraction velocity field. The object of th is  section is 
to relate the two velocity fields. I n  equation ( 8 2 )  Q andk  are orthogonal f rom the assumption o f  
incompressible f low (see f igure 5). Thus, Q can be wr i t ten  as the cross product of k w i t h  some vector e; i.e., 

The superscripts u and d are not used here since the equation can be applied to either region. 

The vor t i c i t y  f ie ld  o_ o f  the wavevector Four ier  component i s  given by 

so that f rom equations (82 )  and (83) 

From equation (85 )  i t  w i l l  be noted that 
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k . o _ = 0  
W r i t i n g  

- 0 i s  to be solved for  i n  te rms of Q. Then, knowing how Q t ransforms between pre-contraction and 
post-contraction locations, the behavior o f  the velocity f ie ld  w i l l  be known. From equations ( 8 5 )  and 
( 8 7 )  

Q(k)  = i [k(k p) - pk21 (€38) 

On taking the cross product o f  this equation w i t h  k, the f i r s t  t e rm on the r i g h t  hand side drops out 
leaving 

This gives two equivalent expressions for  relat ing vo r t i c i t y  and velocity of a Four ier  component 

2. Relatfng Pre-contractlon and Post-contrsctlon Velocftfes 

The relat ions between pre-contraction and post-contraction are now considered. The vor t i c i t y  

Qid = QjU a t p x j  QiU = Qjd dXi/dtj ( B l l )  

o f  a f l u id  par t i c le  i s  related by  the deformation tensor. Using an expression attr ibuted t o  CauchyI6 

where xi represents the pre-contraction coordinate system and ti the post-contraction coordinate 
system. Both coordinate systems are assumed right-handed and orthogonal. The coordinates of a f l u id  
par t ic le  also t ransform according to equation (B  11 1. For example, consider a cube of 
post-contraction f l u id  w i t h  edges paral lel to the axes. The edges can then be wr i t t en  (1,0,0), (0,1,0), 
(0,0,1) where 11 i s  the length of the side of the cube. By w r i t i n g  each of  these vectors as a row  vector, 
the three together fo rm a 3 x 3  m a t r i x  Cd which can be wr i t ten 

@ = a 1  ( 8 1 2 )  

where I i s  the un i t y  matrix. The three upstream transformed vectors denoting the cube are then given 
by  

cu = cd [ ap t j ]  = 11 [ax i /a t j l  ( B  13) 

where [ axi/at j ]  denotes the deformation tensor defined as 

22 



The pre-contraction volume of the cube i s  then given by the cross product o f  two of  the vectors w i th  
the dot product of the third, which i s  the same as the value of the determinant of the matrix. For 
incompressible f low th is  must be i3, the same as the post-contraction value. This requires that the 
determinant o f  the deformation ma t r i x  i n  equation ( B  14) be 1. 

The fol lowing paragraphs w i l l  give the detailed procedure fo r  t ransforming between 
pre-contraction and post-contraction velocity fields. One basic assumption of the analysis to follow i s  
that f l u id  planes i n  one coordinate system remain planes after deformation. This assumption w i l l  be 
grossly incorrect, i n  general, on a large scale. However, it becomes more and more accurate as 
res t r i c t ion  to smaller and smaller scales i s  made. The assumption should thus be adequate i f  the 
turbulence scale i s  small  compared to the scale of the distorted flow. The assumption arises when a 
one-to-one correspondence i s  made between a pre-contraction and a post-contraction Four ier  
component of the turbulence. Each Four ier  component consists of a vo r t i c i t y  d is t r ibut ion over a l l  
space, whereas the deformation tensor i s  a function of position, and the f low i s  distorted by dif ferent 
amounts at dif ferent points. 

The relat ion between the pre-contraction and post-contraction wavevectors has yet to  be 
determined. For the present they w i l l  be denoted by  ku andkd w i t h  the assumption that the two 
wavevectors are related by the deformation tensor in  some manner to be determined later. Equations 
( B  10) and ( B  11) can then be combined to obtain a relat ion between the pre-contraction and 
post-contraction velocity field. Equations ( B  1 1 ) relate pre-contraction and post-contraction 
vo r t i c i t y  levels wh i le  equations ( B  10) relate velocity to vor t i c i t y  at either pre-contraction and 
post -contract ion locat ion. 

Combining equations ( B  10b)  and ( 6  1 l b )  gives 

aiu(ku) = i (kju/ktu) (dXk/dE,) cijk ( 8 1 5 )  

where Cartesian tensor notation i s  used. Summation over repeated indices i s  assumed, and Eijk i s  the 
alternating tensor. Using equation ( B  10a)  to substitute f o r  Qnd gives 

This equation relates the pre-contraction and post-contraction velocities i f  the re la t ion between the 
pre-contraction and post-contraction wavevectors ku and kd i s  known; th is  relat ion w i l l  be 
determined shortly. I t should be noted that although the spatial coordinates of the pre-contraction and 
post-contraction locations do not appear expl ici t ly, they do appear imp l i c i t l y  through the deformation 
tensor. Thus, even though the velocity f ie ld  has been decomposed in to spatial Four ier  components, th is  
i s  i n  some sense a local decomposition. 

I n  applying equation ( B  161, i n  addition to specifying the deformation tensor and wavevector o f  
interest, the velocity Qd must be specified. The amplitude of ad i s  not of concern since the ra t io  o f  
amplitudes i s  a l l  that i s  needed. The direction of Qd must be specified, however. Once kd i s  specified, 
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- Od can l i e  anywhere i n  the plane normal tokd since kd and Qd are normal fo r  the velocity modes 
considered. For the specific case o f  an a i r f o i l  moving through the turbulent f ie ld  consider a plane 
formed by the vector kd and a un i t  vector normal to the a i r f o i l  surface. Then fo r  the specific kd 
vector chosen, the velocity f ie ld can be decomposed into a component in  the plane formed by the vectors 
- kd and fi and a component normal t o  th is  plane. I n  calculating the a i r f o i l  response to turbulence using a 
linearized analysis, only the velocity component along fi w i l l  give a contribution. Thus, any component 
o f  ad normal to the kd, ; plane can be neglected. This allows ad to  be specified as normal t o  kd and i n  
thekd, ; plane. 

3. Relating Pre-contract ion and Post-contraction Wavevectors 

The only remaining relat ion to be determined i n  equation (B 16) i s  that between ku and kd; i.e., 
how the wavevectors of the mode considered become distorted i n  going f rom upstream to downstream. 
As w i th  QU andQd, the wavevectors w i l l  be related through the deformation tensor. The three vectors 
Qd, ad and kd form an orthogonal system. I n  addition, kd i s  assumed to be in the direct ion Qd x Qd so 
that the system i s  r i g h t  handed. Define vectors 
respectively where either d o r  u i s  read, not both. F i r s t  the relat ions between 6" and $w i l l  be 
determined and then the relat ion between kU andkd. As a matter o f  notation, note that subscripts here 
can re fe r  to ei ther components of a vector as i n  the Cartesian tensor notation of  equation (B 16 1, o r  to 
a specific vector such as &, g2, G 3 .  Generally the meaning w i l l  be clear f rom the context since ê  
already indicates a vector and the subscripts 1,2 o r  3 then indicate a specific vector, not the 
component of a vector. 

g t d v U ,  6sdsu along (Idsu, QdsU, and kdPu 

The relat ion between &u, Gld i s  readi ly obtained from the knowledge that vortex l ines follow 
f lu id  particles. Since i, i s  paral le l  to Q, equation ( B  11) immediately gives GId: i.e., i f f l  defines the 
direct ion of ilU, then 

where the j subscript on ed now indicates one of  the three Cartesian components of the vector itd. 
Also, the summation convention over repeated indices i s  assumed. 

To calculate the vector gZu, i t  i s  not suff icient t o  merely substitute subscripts 2 for 1 i n  
equation (8 17). The resul t ing vector so defined would not necessarily be orthogonal to  GIu. Therefore 
a dif ferent approach w i l l  be used, f i r s t  calculating 63u, then itu. F i r s t  define a vector 

As noted above, th is  vector w i l l  not i n  general be orthogonal to GlU. However, it w i l l  l i e  i n  the same 
plane of vor t i c i t y  as ild and 
6p and izd. Because the vor t i c i t y  moves w i th  the f lu id  and because equation ( 6  18) i s  a Lagrangian 
type of equation fol lowing f lu id  p a r t i ~ l e s , f ~ ~  must l i e  i n  the same plane o f  vortex lines. Thus, 
although 
by GlU andf2U; i.e., 

I 

For example, consider a plane o f  vortex l ines defined by the vectors 

hasn't yet been determined, e"3u can be found since i t  must be normal to the plane defined 

where, as i n  equation (B 171, the denominator i s  f o r  the purpose of normalizing the resul t  t o  a un i t  
I vector. Finally, itu can be found direct ly f rom GIu and 63u; i.e., 
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Now the relat ion between k' and kd can be determined. This relat ion i s  found f rom the relat ions 

kU = 2 n / X U  kd = 2n /Xd  ( 8 2 1 1  

along w i t h  the value 0 f f3 "  obtained by replacingkd w i th  Qjd i n  equation (B  1 l a )  and by the knowledge 
that ku and kd are  para l le l  to the vectors e^3u and ê sd respectively. Consider a vector Xd 
post-contraction fluid. I f  th is  vector begins on the crest of a wave of the turbulence wavevector 
component, i t  w i l l  reach just  to the next crest since the vector has magnitude Ad; see f igure 6. I n  the 
pre-contraction fluid the vector begins and ends on the corresponding adjacent crests, but  not 
necessarily along the shortest distance; Le., the vector w i l l  not necessarily be along e^3u. I f  th is  
upstream vector i s  denoted t ~ ~ ~ ,  then fol lowing the definit ions in equations ( B  17) and ( B  18) 

between wavenumber k and wavelength X 

i n  the 

(h3')i = Xd(f3u)i = X d d  (e3 ) j  (aXi /at j )  (822 )  

The component of t13" i n  the direction o f  e^3u must have a length Xu f r om the above discussion. Thus, 

XU =h3u g 3 u  = ~d (e3uli (e3d l j  (axi/atj)  (823 )  

From equation ( 8 2  1) 

kd/ku = (e3u)i (e3d)j (ax i /a t j )  ( 8 2 4 )  

The relat ions between the pre-contraction and post-contraction values of both wavenum ber and 

vectors f rom the three post-contraction e^d vectors using equations ( B  17) through 
velocity can be determined f rom the above relations. The procedure i s  f i r s t  to f ind  the three 
pre-contraction 
(820) .  The ra t i o  kd/ku can then be found f rom equation (824) .  Finally, QU can be found f rom 
equation ( B  16 1. 

Several of the vector operations i n  equation ( B  16) need not actually be car r ied  out. The 
necessary operations have already been performed i n  deriving the 
are orthogonal, 

vectors. Thus, since kld  and Omd 

kld Omdclmn = - (eld),, kd Od (825 )  

The vector (eld)j dxi/dtj has already been calculated i n  equation ( B  17) and i s  the vectorJlu paral lel 
to S i u .  Thus equation (B 16) can be wr i t t en  

Oiu(ku) = Od(kd) flu e^*" kd/ kU (826) 

Acomputer program was in i t i a l l y  w r i t t en  using equation ( B  16). This was changed t o  the s impl i f ied 
version using equation (B26) ,  and the programs were found to  agree. 

4. Comparison w i t h  Results o f  R ibner  and Tucker 
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a. Wavenumber Relation 

Ribner and Tucker's have performed th is  same analysis, but  for  the restr icted case where the 
deformation tensor i s  diagonal. This i s  no rest r ic t ion i n  p r inc ip le  since a rotation to pr inc ipa l  
coordinates can always be performed in which the deformation tensor i s  diagonal. I n  practice the 
present method may be simpler. The present resul ts  w i l l  be examined to ve r i f y  that they reduce to 
those of Ribner and Tucker. 

The deformation considered by Ribner and Tucker i s  

0 0 n3-1 " 1  11'" 0 [31 = [ 0 n2-i 0 ( 8 2 7 )  

The relat ion given between kd and kU i s  

- kd = ( ki'/lll, kzU/12, kSU/ l3 )  ( 8 2 8 )  

This can be shown to follow f rom equations (824 )  and ( 8 2 7 ) ;  Le., mult ipl icat ion o f  equation ( 8 2 4 )  
by kd  gives 

kzd = kiu kjd dxi/dEj = ki' kid 11p + kZU kzd !I2'' + k3U k3d 13-1 (829 )  

This w i l l  hold fo r  a l l  k values i f  

Equation (830)  agree w i t h  equation (828).  Thus, the procedure for  calculation of k' f rom kd 
presented here reduces to that of Ribner and Tucker for a diagonal deformation tensor. 

b. Velocity Relation 

Equation (B 16) for the relat ion between pre-contraction and post-contraction velocities can 
s im i la r l y  be reduced to the fo rm given by Ribner and Tucker. Notation presents a minor  problem i n  
that the use of the Cartesian indices can be confusing. The notation used here i s  that a subscr ipt  i n  
parentheses i s  a duplicate index and i s  not summed over unless the index appears twice elsewhere i n  
the expression. Thus, Ai B(i)  impl ies no summation over i, but the var iable B has the same index as A. 
However, for  Ai Bi C(i), summation over i i s  assumed w i th  C i n  each te rm of the summation taking the 
same index as A and B. 

Equation ( B  16) i s  rewr i t ten  into the fo rm used by Ribner and Tucker relat ing the 
post-contraction velocity ad to the pre-contraction value Qu ( ra ther  than vice versa as i n  equation 
(816 ) ) .  Then 

Using the inverse o f  equation ( B  27 1 gives 
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Now 
11' 12 13 = 1 ( 8 3 3 )  

f o r  incompressible f low since the determinant of the deformation ma t r i x  must be 1 as discussed 
previously. Then since cijn = 0 unless i * j * n, equation (832 )  can be w r i t t e n  

equation (834)  becomes 

Introducing equation ( 8 3 0 )  

( 8 3 4 )  

( 8 3 5 )  

But th is  i s  exactly equation ( 13) of reference 15. Thus, the present resul t  re lat ing pre-contraction 
and post-contraction velocity reduces to the previously derived resul t  o f  Ribner and Tucker for the 
case of a diagonal deformation tensor. 

. 
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Figure 5: SinuWjal vekdty varhtbn for a wavevector component of turkrlenw. 
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